Tag Archives: Knowledge

Psychology and the Art of Dishwasher Maintenance

The Importance of Knowing

It’s useful and powerful to know how something works. The cliché that “knowledge is power” may be a common and overused expression but that does not mean it is inaccurate.  Let me illustrate this idea with a story from a different area. I use this rhetorical device often, by the way. I frequently try to illustrate one idea with an analogy from another area. It’s probably a result of being a professor and lecturer for so many years. I try to show the connection between concepts and different examples. It can be helpful and can aid understanding. It can also be an annoying habit.

My analogy has to do with a dishwasher appliance. I remember the first time I figured out how to repair the dishwasher in my kitchen. It’s kind of a mystery how the dishwasher even works, because you never see it working (unless you do this). You just load the dishes, add the detergent, close the door, and start the machine. It runs its cycle out of direct view and when the washing cycle is finished, clean dishes emerge. So there’s an input, some internal state where something happens, and an output. We know what happens, but not exactly how it happens. We usually study psychology and cognition in the same way. We can know a lot about what’s going in and what’s coming out. We don’t know as much about what’s going in inside because we can’t directly observe it. But we can make inferences about what’s happening based on the function.

The Dishwasher Metaphor of the Mind

So let’s use this idea for bit. Let’s call it the “dishwasher metaphor“. The dishwasher metaphor for the mind assumes that we can observe the inputs and outputs of psychological processes, but not their internal states. We can make guesses about how the dishwasher achieves its primary function of creating clean dishes based on what we can observe about the input and output. We can also make guesses about the dishwasher’s functions by taking a look at a dishwasher that is not running and examining the parts. We also can make guesses about the dishwasher’s functions by observing what happens when it is not operating properly. And we can even make guesses about the dishwasher’s functions by experimenting with changing the input, changing how we load the dishes for example, and observing how that might affect the outputs. But most of this is careful, systematic guessing. We can’t actually observe the internal behaviour of the dishwasher. It’s mostly hidden from our view, impenetrable. Psychological science turns out to be a lot like trying to figure out how the dishwasher works. For better or worse, science often involves careful, systematic guessing

Fixing the Broken Dishwasher

The dishwasher in my house was a pretty standard early 2000s model by Whirlpool, though sold under the KitchenAid brand. It worked really well for years, but at some point, I started to notice that the dishes weren’t getting as clean as they used to. Not knowing what else to do, I tried to clean it by running it empty. This didn’t help. It seemed like water was not getting to the top rack. And indeed if I opened it up while it was running I could try to get an idea of what was going on. Opening stops the water but you can catch a glimpse of where the water is being sprayed. When I did this, I could observe that there was little or no water being sprayed out of the top sprayer arm. So now I had the beginnings of a theory of what was wrong, and I could begin testing hypotheses about this to determine how to fix it. What’s more, this hypothesis testing also helped to enrich my understanding of how the dishwasher actually worked.

Like any good scientist, I consulted the literature. In this case, YouTube and do-it-yourself websites. According to the literature, several things can affect the ability of the water to circulate. The pump is one of them. The pump helps to fill the unit with water and also to push the water around the unit at high enough velocity to wash the dishes. So if the pump was not operating correctly, the water would not be able to be pushed around and would not clean the dishes. But that’s not easy to service and also, if the pump were malfunctioning, it would not be filling or draining at all. So I reasoned that it must be something else.

There are other mechanisms and operations that could be failing and therefore restricting the water flow within the dishwasher. And the most probable cause was that something was clogging the filter that is supposed to catch particles from entering the pump or drain. It turns out that there’s a small wire screen underneath some of the sprayer arms. And attached to that is a small chopping blade that can chop and macerate food particles to ensure that they don’t clog the screen. But after a while, small particles can still build up around it and stop it from spinning, which stops the blades from chopping, which lets more food particles build up, which eventually restricts the flow of water, which means there’s not enough pressure to force water to the top level, which means there’s not enough water cleaning the dishes on the top, which leads the dishwasher to fail. Which is exactly what I had been observing. I was able to clean and service the chopper blade and screen and even installed a replacement. Knowing how the dishwasher works allowed me to keep a closer eye on that part, cleaning it more often. Knowing how the dishwasher worked gave me some insight into how to get cleaner dishes. Knowledge, in this case, was a powerful thing.

Trying to study what you can’t see

And that’s the point that I’m trying to make with the dishwasher metaphor.  We don’t necessarily need to understand how it works to know that it’s doing its job. We don’t need to understand how it works to use it. And it’s not easy to figure it out, since we can’t observe the internal state. But knowing how it works, and reading about how others have figured out how it works, can give you an insight into how the the processes work. And knowing how the processes work can give you and insight into how you might improve the operation, how you can avoid getting dirty dishes.

Levels of Dishwasher Analysis

This is just one example, of course and just a metaphor, but it illustrates how we can study something we can’t quite see. Sometimes knowing how something works can help in the operation and the use of that thing. More importantly, this metaphor can help to explain another theory of how we explain and study something. I am going to use this metaphor in a slightly different way and then we’ll put the metaphor away. Just like we put away the clean dishes. They are there in the cupboard, still retaining the effects of the cleaning process, ready to be brought back out again and used: a memory of the cleaning process.

Three ways to explain things

I think we can agree that there are different ways to clean dishes, different kinds of dishwashers, and different steps that you can take when washing the dishes. For washing dishes, I would argue that we have three different levels that we can use to explain and study things. First there is a basic function of what we want to accomplish, the function of cleaning dishes. This is abstract and does not specify who or how it happens, just that it does. And because it’s a function, we can think about it as almost computational in nature. We don’t even need to have physical dishes to understand this function, just that we are taking some input (the dirty dishes) and specifying an output (clean dishes). Then there is a less abstract level that specifies a process for how to achieve the abstract function. For example, a dishwashing process should first rinses off food, use detergent to remove grease and oils, rinse off the detergent, and then maybe dry the dishes. This is a specific series of steps that will accomplish the computation above. It’s not the only possible aeries of steps, but it’s one that works. And because this is like a recipe, we can call it an algorithm. When you follow these steps, you will obtain the desired results. There is also an even more specific level. We can imagine that there are many ways to build a system to carry out these steps in the algorithm so that they produce the desired computation. My Whirlpool dishwasher is one way to implement these steps. But another model of dishwasher might carry them out in a slightly different way. And the same steps could also be carried out by a completely different system (like on of my kids washing dishes by hand, for example). The function is the same (dirty dishes –> clean dishes) and the steps are the same (rinse, wash, rinse again, dry) but the steps are implemented by different system (one mechanical and the other biological). One simple task but there are three ways to understand and explain it.

David Marr and Levels of Analysis

My dishwasher metaphor is pretty simple and kind of silly. But there are theorists who have discussed more seriously the different ways to know and explain psychology. Our behaviour is one, observable aspect of this picture. Just as the dishwasher makes clean dishes, we behave to make things happen in our world. That’s a function. And just like the dishwasher, there are more that one way to carry out a function, and there are also more one way to build a system to carry out the function. The late and brilliant vision scientist David Marr argued that when trying to understand behaviour, the mind, and the brain, scientists can design explanations and theories at three levels. We refer to these as Marr’s Levels of Analysis (Marr, 1982). Marr worked on understanding vision. And vision is something that, like the dishwasher, can be studied at three different levels.

Untitled

Marr described the Computational Level as an abstract level of analysis that examines the actual function of the process. We can study what vision does (like enabling navigation, identifying objects, even extracting regularly occurring features from the world) at this level and this might not need to be as concerned with the actual steps or biology of vision. But at Marr’s Algorithmic Level, we look to identify the steps in the process. For example, if we want to study how objects are identified visually, we specify the initial extraction of edges, the way the edges and contours are combined, and the how these visual inputs to the system are related to knowledge. At this level, just as in the dishwasher metaphor, we are looking at species of steps but have not specified how those steps might be implemented. That examination would be done at the Implementation Level where we would study the visual system’s biological workings. And just like with the dishwasher metaphor, the same steps can be implemented by different systems (biological vision vs computer visions, for example). Marr’s theory about how we explain things has been very influential in my thinking and in psychology in general. It gives us a way to know about something and study somethings at different levels of abstraction and this can lead to insights about biology, cognitions, and behaviour.

And so it is with the study of cognitive psychology. Knowing something about how your mind works, how your brain works, and how the brain and mind interact with the environment to generate behaviours can help you make better decisions and solve problems more effectively. Knowing something about how the brain and mind work can help you understand why some things are easy to remember and others are difficult. In short, if you want to understand why people—and you—behave a certain why, you need to understand how they think. And if you want to understand how people think, you need to understand the basic principles of cognitive psychology, cognitive science, and cognitive neuroscience.

Reference

Marr, D. Vision: A Computational Investigation into the Human Representation and Processing of Visual Information (WH Freeman, San Fransisco, 1982).

The Language of Sexual Violence

GettyImages_1043787558.0

Women’s March leaders address a rally against the confirmation of Supreme Court nominee Judge Brett Kavanaugh in front of the court building on September 24.
 Chip Somodevilla/Getty Images

The language we use to describe something can provide insights into how we think about it. For example, we all reserve words for close family members (“Mama” or “Papa”) that have special meaning and these words are often constrained by culture. And as elements of culture, there are times when the linguistic conventions can tell us something very deep about how our society think about events.

Current Events

This week (late September 2018) has been a traumatic and dramatic one. A Supreme Court nominee, Brett Kavanaugh was accused of an attempted rape 35 years ago. Both he and the accuser, Christine Blasey Ford were interviewed at a Senate hearing. And much has been written and observed about they ways they spoke and communicated during this hearing. At the same time, many women took to social media to describe their own experiences with sexual violence. I have neither academic expertise nor personal experience with sexual violence. But like many, I’ve followed these events with shock and with heartbreak.

Survivors

I’ve noticed something this week about how women who have been victims of sexual violence talk about themselves and the persons who carried out the assault. First of all, many women identify as survivors and not victims. A victim is someone who had something happen to them. A survivor is someone who has been able to overcome (or is working to overcome) those bad things. I don’t know if this is a conscious decision or not, though it could be. It is an effective way for a woman who had been a victim to show that they are a survivor. I think that many women use this term intentionally to show that they have survived something.

Part of The Self

But there is another linguistic construction that is even more interesting. I’ve noticed, especially in the news and on social media, that women say or write  my rapist” or “my abuser”,  or “my assailant”.  I don’t believe this is intentional or affected. I think this is part of the language because it’s part of how the person thinks about the event. Or maybe part of how society thinks about the event. The language suggests that women have internalized the identity of the perpetrator and that the event and the abuser has also become part of who they are as women.  It’s deep and consequential in ways that few other events are.

Of course a sexual assault would be expected to be traumatic and even life changing, but I’m struck by how this is expressed in the idioms and linguistic conventions women use to describe the event. Their language suggests some personal ownership. It’s more than a memory for an event or an episode. It’s a memory for person, a traumatic personal event, and also knowledge of the self. Autonoetic memory is deeply ingrained. It is “Indelible in the hippocampus

All of us talk this way sometimes, of course. If you say “this cat” it’s different from saying “my cat”. The former is an abstraction or general conceptual knowledge. The latter is your pet. It’s part of your identity. “My mother”, “my car”, “my smartphone” are more personal but still somewhat general. But “my heart”,  my child ‘, “my body” , and “my breath” are deeply personal and these things are just part of who we are.

Women don’t use this construction when talking about non sexual violence. They might say “the person who cut me off” or “the guy who robbed me” . Similarly, men who have been assaulted don’t use this language . They say “the man who assaulted me. “ or “the guy who punched me”, or even “the priest who abused me” . And men do not use this language to refer to people that have assaulted (e.g. “my victim“). You might occasional hear or read men refer to “my enemy or “my rival” which, I think, has the same deeper, more profound meaning as the terms used by women for sexual violence but not as traumatic. So by and large this seems to be something that women say about sexual violence specifically.

Deep and Personal Memory

So when a woman, says “my rapist“ it suggests a deep and personal knowledge.  Knowledge that has and will stay with them, affect their lives, and affect how they think about the event and themselves. Eyewitness memory is unreliable. Memory for facts and events—even personal ones—are malleable. But you don’t forget who someone is. You don’t forget the sound of your sibling’s voice. You don’t forget sight of your children. You don’t forget your address. You don’t forget your enemy…and you would not forget your abuser or your rapist.

The fluidity of thought

Knowing something about the basic functional architecture of the brain is helpful in understanding the organization of the mind and in understanding how we think and behave. But when we talk about the brain, it’s nearly impossible to do so without using conceptual metaphors (when we talk about most things, it’s impossible to do so without metaphors). 

Conceptual metaphor theory is a broad theory of language and thinking from the extraordinary linguist George Lakoff. One of the basic ideas is that we think about things and organize the world into concepts in ways that correspond to how we talk about them. It’s not just that language directs thought (that’s Whorf’s idea), but that these two things are linked and our language also provides a window into how we think about things. 

Probably the most common metaphor for the brain is the “brain is a computer” metaphor, but there are other, older ideas.

The hydraulic brain

One interesting metaphor for brain and mind is the hydraulic metaphor. This probably goes back at least to Descartes (and probably earlier), who advocated a model of neural function whereby basic functions were governed by a series of tubes carrying “spirits” or vital fluids. In Descartes model, higher order thinking was handled by a separate mind that was not quite in the body. You might laugh at the ideas of brain tubes, but this idea seems quite reasonable as a theory from an era when bodily fluids were the most obvious indicators of health, sickness, and simply being alive: blood, discharge, urine, pus, bile, and other fluids are all indicators of things either working well or not working well. And when they stop, you stop. In Descartes time, these were the primary ways to understand the human body. So in the absence of other information about how thoughts and cognition occur it makes sense that early philosophers and physiologists would make an initial guess that thoughts in the brain are also a function of fluids.

Metaphors for thinking

This idea, no longer endorsed, lives on in our language in the conceptual metaphors we use to talk about the brain and mind. We often talk about cognition and thinking as information “flowing” as in the same way that fluid might flow. We have common expressions in English like the “stream of consciousness” or “waves of anxiety”, “deep thinking”, “shallow thinking”, ideas that “come to the surface”, and memories that come “flooding back” when you encounter an old friend. These all have their roots (“roots” is another conceptual metaphor of a different kind!) in the older idea that thinking and brain function are controlled by the flow of fluids through the tubes in the brain.

In the modern era, it sis still common to discuss neural activation as a “flow of information”. We might say that information “flows downstream”, or that there is a “cascade” of neural activity. Of course we don’t really mean that neural activation and cognition are flowing like water, but like so many metaphors it’s just impossible to describe things without using these expressions and in doing so, activating the common, conceptual metaphor that thinking is a fluid process.

There are other metaphors as well (like the electricity metaphor, behaviours being “hard wired”, getting “wires crossed”, an idea that “lights up”) but I think the hydraulic metaphor is my favourite because it captures the idea that cognition is fluid. We can dip our toes in the stream or hold back floods. And as you can seen from earlier posts, I have something of a soft spot for river metaphors.

 

 

River Water

A simple metaphor

I’ve been reading a lot about privilege, gender, and colonization. I will not even try to pretend to be an expert in this area. But I was thinking about how I am often unaware of my own life and its privilege and the role of luck and chance in all of our lives. The following metaphor / parable is what I came up with. It’s a bit of a clumsy analogy, but I thought it worked on a simple level for me.

We are like rivers

A river flows in the direction that it flows because of many things. Although some rivers are fast, or slow, or deep, or wide, they are all made of the same water. And really, a river is nothing more than water flowing along a course that was created by the water that came before it: the water that created the channel, the water that created the canyon, even the water that is downstream, pulling the river along its course.

The river doesn’t know this. It cannot know the struggles of the earlier river-water that moved the rocks. It cannot know the ease with which the earlier river-water flowed down an unobstructed path. It cannot know that the earlier river-water was obstructed and damned or if a melting glacier helped the earlier river-water to speed its course and deepen its channel. It cannot know that all rivers eventually stop flowing and that all river-water becomes part of the same sea.

All the river can know is it that it is flowing now: flowing quickly or flowing slowly; constrained or unconstrained, oblivious to its own history even as its present course and identity are shaped its history.

We are like rivers in this way. We flow along in our lives, making progress, confronting obstacles, and not always knowing the full context of our our life course.

We should try to understand

But we can try to know more that the river knows. Even as we try to live in the present, we can try to understand how the past shaped the channels and canyons of our life-course. We can see how our current circumstances might make it easier or more difficult depending on the obstacles that previous generations faced. We are the beneficiaries to the sometimes arbitrary circumstances that favoured or did not favour those who came before us. We may also carry the burden of the circumstances imposed on those who came before us. Those of us whose lives flow though clear cut channels may not always realize that we’re travelling a path with fewer obstacles, because those obstacles were removed long before us. We receive these benefits, earned or unearned, aware, or unaware.  But people whose paths are or were constrained or obstructed are often all too aware of the impedance. And like a river that was once blocked or dammed, the effects of the obstruction can be seen and felt long after the impedance was removed.

But we’re all the same river-water, flowing to the same sea. But we don’t all take the same course. We would do well to be aware of our privilege and to understand that we may not all have the same course to travel…but we still have to travel to the same place.

Be mindful of your own trajectory. Be mindful of others.

And help when you can.

 

Grade Inflation at the University Level

I probably give out too many As. I am aware of this, so I may be part of the problem of grade inflation. Grade inflation has been a complaint in universities probably as long as there have been grades and as long as there have been universities.

Harvard students receive mostly As.

But the issue has been in the news recently. For example, a recent story asserted that the most frequent grade (e.i. the modal grade) at Harvard was an A. That seems a bit much. If Harvard is generally regarded as of the world’s best universities, you would think they would be able to asses their students on a better range. A great Harvard undergrad should be a rare thing, and should be much better than the average Harvard undergrad. Evidently, all Harvard undergrads are great.

One long time faculty member, says that “in recent years, he himself has taken to giving students two grades: one that shows up on their transcript and one he believes they actually deserve….“I didn’t want my students to be punished by being the only ones to suffer for getting an accurate grade,”

In this way, students know what their true grade is, but they also get a Harvard grade that will be an A so that they look good and that Harvard looks good. It’s not just Harvard, of course. This website, gradeinflation.com, lays out all details. Grades are going up everywhere…But student performance may not be.

The University is business and As are what we make.

From my perspective as a university professor, I see the pressure from all sides, and I think the primary motivating force is the degree to which universities have heavily embraced a consumer-driven model. An article The Atlantic this week got me thinking about it even more. The article points out, we (university) benefit when more students are doing well and earning scholarships. One way to make sure they can earn scholarships is to keep the grades high. It is to our benefit to have more students earning awards and scholarships.

In other words, students with As bring in money. Students with Cs do not. But this suggests that real performance assessment and knowledge mastery is subservient to cash inflow. I’m probably not the only one who feels that suggestion is true.

And of course, students, realizing they are the consumer, sort of expect a good grade for what they pay for. They get the message we are sending. Grades matter more than knowledge acquisition. Money matters more than knowledge. If they pay their tuition and fees on time, they kind of expect a good grade in return. They will occasional cheat to obtain these grades. In this context, cheating is economically rational, albeit unethical.

Is there a better system?

I am not sure what to do about this. I’m pretty sure that my giving out more Cs is not the answer, unless all universities did this. I wonder if we really even need grades? Perhaps a better system would be a simple pass/fail? Or Fail/Pass/Exceed (three way). This would suggest that students have mastered the objectives in the course and we (the University) can confidently stand behind our degree programs and say that our graduates have acquired the requisite knowledge. Is that not our mission? Does it matter to an employer if a student received an A or a B in French? Can they even use that as a metric when A is the modal grade? The employer needs to know that the student mastered the objectives for a French class and can speak French. Of course, this means that it might be tricky for graduate and professional schools to determine admission. How will medical schools know who admit if they do not have a list of students with As? Though if most students are earning As, it renders moot that point.

In the end, students, faculty, and university administrators are all partially responsible for the problem, and there is no clear solution. And lurking behind it, as is so often the case, is money.